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A reinterpretation is given of a successful phenomenological approach to hadron 
self-energy effects known as the unitarized quark model. General arguments are 
given that the proper description of strong interactions may require abandoning 
the assignment of a primary role to continuous concepts such as position and 
momentum in favor of discrete ones such as spin or W-spin. The reinterpretation 
exploits an analogy between the W-spin diagrams occurring in the calculations 
of hadronic loop effects and the spin network idea of Penrose. A connection 
between the S-matrix approach to hadron masses and the purely algebraic 
approach characteristic of the quark model is indicated. Several hadron mass 
relations generated by a resulting SU(6)w-group-theoretic expression are presen- 
ted and discussed. Results of an attempt to generalize the scheme to the descrip- 
tion of hadron vertices are reported. 

1. I N T R O D U C T I O N  

Despite  impor tan t  successes of local field theory, the fundamen ta l  
quest ions concern ing  the precise connec t ion  between the classical macro- 
scopic space-t ime satisfying Eins te in ian  locality and  the nonloca l  propert ies 
of q u a n t u m  theory are still unresolved.  Thus,  a l though q u a n t u m  chromody-  

namics  offers the possibi l i ty of describing the world of hadrons  in terms of 
a local q u a n t u m  field theory of quarks and  gluons,  one may still argue that 
in a more fundamen ta l  q u a n t u m  approach to strong interact ions one should 

not  assume the classical space-time c o n t i n u u m  as one of the pr imary 
concepts  o f  the theory. 

In accordance  with the latter idea, the present  paper  proposes a different 
in terpre ta t ion  of the successful phenomenolog ica l  approach to the ques t ion 
of hadron ic  self-energy effects studied recently (Zenczykowgki,  1986; 

~Department of Theoretical Physics, Institute of Nuclear Physics, 31-342 Krak6w 23, Poland. 
Present address: Department of Physics, College of Physical Science, University of Guelph, 
Guelph, Ontario, N1G 2W1 Canada. 

9 
0020-7748/8S/0100-0009506.00/0 ~ 1988 Plenum Publishing Corporation 



I0 Zenczykowski 

Tbrnqvist, 1979). The success of the mass formulas derived within this 
approach (Zenczykowski, 1986) is here attributed to a suggested tight 
connection between strong interactions and the supposed quantum origin 
of macroscopic space. In addition, this paper contains more complete meson 
mass formulas, discussions on the generality of mass relations obtained 
previously, and results of an attempt to apply the scheme to the description 
of hadron vertices. 

General arguments supporting the view that the problem of strong 
interactions is perhaps closely related to the supposed quantum origin of 
classical macroscopic space are presented in Section 2. In this section the 
spin network idea of Penrose is briefly recalled. The point of view is adopted 
that it constitutes a part of a more complicated discrete network, from which 
macroscopic space and strong interactions properties should be derived. 

In Section 3 a simple algorithm allowing the calculation of the combined 
spin-flavor dependence of meson and baryon mass differences is given. This 
algorithm, suggested by S-matrix considerations, is interpreted in the spirit 
of the discrete quantum network idea. 

An attempt to apply the scheme to the description of vertex symmetry 
breaking is briefly reported in Section 4. 

Finally, the standard interpretation of the phenomenological approach 
of Zenczykowski (1986) and T/Srnqvist (1979) and the reinterpretation of 
this paper are juxtaposed in the last section. 

2. GENERAL 

In quantum field-theoretic approaches space-time provides a classical 
background, intuitively thought of as a medium in which the particles 
propagate according to the rules of quantum theory. A prevalent opinion 
is that the concept of classical space starts to be in conflict with quantum 
theory below - 1 0  -33 cm only, where quantum gravitation effects should be 
considered. This is much below - - 1 0  -13 cm, the characteristic distance of 
strong interactions, and ~ 1 0  -16 cm, the distance at which QED has been 
experimentally verified. It may seem therefore that the idea of linking strong 
interactions with the quantum origin of space is not tenable. It is known, 
however, that quantum theory possesses nonlocal properties (Bell, 1964; 
Stapp, 1971; Clauser and Shimony, 1978). Furthermore, the experiment of 
Aspect et aL (1982) has confirmed that physical systems may exhibit strongly 
nonlocal features (over macroscopic distances of order 10 m). The experi- 
mental results are both in excellent agreement with quantum theory and in 
violent disagreement with conventional (as drawn from special relativity) 
ideas about the propagation of causal influences. Consequently, the opinion 
is more and more often expressed (Clauser and Shimony, 1978) that our 
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view on the nature of space-time requires a thorough revision. Since the 
problem occurs already for flat space-time, it seems that this conflict between 
quantum theory and our concept of space should be resolved before one 
attempts to take gravitation into account. Thus, the Planck length need not 
correspond to any critical distance at which one might expect the elucidation 
of the origin of the conflict between quantum rules and our understanding 
of space-time. 

Similarly, the distance 10 -16 c m  obtained from the experimentally 
verified application of local field theory does not set an upper limit for such 
a critical distance. In fact, both the algorithm of quantum theory and the 
Aspect experiment suggest that no such critical distance exists. 

In the framework of local field theories both classical (e.g., continuous 
space-time) and quantum (e.g., quantization prescription, rules of calcula- 
tion) concepts are built in as primary concepts. Within such theories it is 
therefore impossible to study the conceivable possibility that they are 
actually related. It has been proposed in various contexts (Patton and 
Wheeler, 1975; Wheeler, 1973; Chew, 1971; Penrose, 1971)that continuous 
classical space-time should be considered secondary and that the primary 
concepts should be quantum-theoretic and most likely discrete (Penrose, 
1971). The points of space-time would then be derived concepts. The most 
obvious physical concept which has well-known discrete (as opposed to 
continuous) quantum properties and is tightly connected with the notion 
of space-time itself is angular momentum. The idea of Penrose (1971) was 
therefore to start from angular momentum and build from it the concept 
of space in some way. His basic idea begins with the problem of defining 
the direction of spin projection of, say, a spin-l/2 h particle. Such a particle 
has only two "directions" to choose from [forget about the direction 
provided by the continuous (!) momentum]. Penrose writes: "whether these 
possibilities are 'up' and 'down' or 'right' and 'left' depends on how things 
are connected with the macroscopic world. Since we do not want to think 
of such alternatives as referring to preexisting directions of a background 
space--we must deal with total angular momentum j only." The relative 
orientation of such a spin-j particle may be defined only with respect to 
some larger (higher j value) structure (which thus could be thought of as 
quasiclassical) belonging to the discrete system under consideration. This 
orientation can be determined through an "experiment" in which the particle 
and the larger structure examining it combine and/or exchange spin. This 
is a typical situation encountered in quantum systems: the outcome of an 
experiment depends both on the examined object and on the whole experi- 
mental setup. In this way one is led to the study of spin networks and the 
closely related 3n - j  symbols, which should be among the basic structures 
of the combinatorial approach to macroscopic space. 
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In the simplest version of his approach Penrose considered a universe 
built out of such spin networks and attempted to define angles and hence 
rotations in terms of these spin structures. Later he was led to the study of 
conformal group in which rotations and translations are treated on an equal 
footing (Penrose and MacCallum, 1973). Although the resulting scheme 
was originally intended to approach in a different way the problem of the 
quantization of gravity, attempts to apply it to elementary particle physics 
and in particular to strong interactions have also been made (Perj6s, 1979; 
Penrose et al., 1978). The proposed particle classification (Penrose, 1977; 
Perj6s, 1977) does not seem, however, to correspond in a direct way to the 
standard pattern in which elementary "particles" are grouped into gener- 
ations built from leptons and three-colored quarks, both species coming in 
weak-isospin doublets. Such a correspondence, with quarks as conformal 
semispinors, can be obtained (Budini, 1979) only at the expense of enlarging 
the original conformal group, an indication that the way of combining 
rotations and translations in the original twistor scheme may not be wholly 
correct nor sufficient. Putting aside this scheme as a whole, it may still be 
argued that the spin network idea should be very well suited to the descrip- 
tion of strong interactions in which spin seems to play a very important 
role (Anonymous, 1985; Grandpeix and Lur~at, 1985). Note also that no 
distance scale is fixed by the spin network alone. Thus, it should be possible 
to introduce the hadronic characteristic scale of  10 -13 cm into the theory. 
In this paper our attention is restricted to spin structures only. No construc- 
tive proposal for any "discrete predecessor" of momentum (distance) is 
made. It is thought, however, that "individual particles and simple systems 
would not really know what momentum is" (Penrose, 1971). This should 
be contrasted with the S-matrix approach, which dispenses with the notion 
of  space-time but retains the concept of continuous classical momentum 
(Chew, 1971). 

The aim of  this paper is to propose a combinatorial expression for the 
spin dependence of hadron masses. The association of  the problem of mass 
with the problem of strong interactions may seem unjustified at present. 
However, the clarity of  the concept of mass is somewhat blurred in strong 
interactions. In standard approaches one first assumes the existence of 
pointlike quarks within hadrons and assigns them current mass as if they 
were free ordinary particles like leptons. Then, through a confinement dogma 
these "particles" become unobservable and the "long-distance," "con- 
stituent" quark masses 2 are believed to emerge as more appropriate in the 

2The best available parameter-free model for baryon magnetic moments  (from which constituent 
quark masses were originally determined) is the model of  Schwinger (1967; Zenczykowski, 
1985), in which the "const i tuent"  quark mass is by definition half  the mass of  the corresponding 
vector meson. 
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description of many low-energy properties of hadrons. Setting apart any 
specific implementation of  this general scheme, it is obvious that any such 
scheme is composed of two logical steps, the second of which (confinement) 
is contrived to cancel partially the assumption (assignment of mass to a 
quark) made in the first step. If the concept of mass cannot be applied to 
a single quark (not even zero mass), the problem of confinement does not 
exist, since in all quark searches one naturally looks for an object with 
conventional particle attributes. 

Although we do not want to assign continuous concepts such as position 
or momentum to the quark right from the beginning they might emerge in 
an appropriate large-structure limit, in accordance with the general spirit 
of  the combinatorial approach. In the realm of strong interactions the only 
objects to which the concept of mass could be applied should be hadrons 
themselves. Since several quark model successes rest on the assumption 
that the quark is an orthodox particle with all its attributes, to substantiate 
the above considerations it is necessary to reproduce successful quark model 
relations using the concept of hadron mass alone. In the following section 
a number of such relations (and a few additional ones) are actually derived 
in this way. The basic ingredient of the approach is a combinatorial prescrip- 
tion for the spin dependence of  hadron masses. This prescription is abstrac- 
ted from the phenomenological approach of Zenczykowski (1986) and 
T6rnqvist (1979) (based on the S-matrix ideas) as the leading term of hadron 
self-energy differences and in this paper is considered fundamental. 

3. H A D R O N  MASSES 

The concept of quark mass will not be used below in the derivation of 
hadron mass relationships. The success of the quark model approach 
(Gell-Mann, 1962, 1964; Okubo, 1962) forces us to assume, however, that 
hadrons should be described as quantum states composed of quark-anti- 
quark pairs (for mesons) and of three quarks (for baryons). The term 
"quark"  describes here a spin-flavor index only. In accordance with the 
ideas of the preceding section, we do not assign momentum to a single 
quark (nor to a hadron constructed in this way: only through its correlation 
with the macroscopic world is the concept of continuous momentum thought 
to be eventually assignable to a hadron). No insight is proposed on the 
origin of flavor quantum number. "Ground-state"  mesons transform as 
1035 ,  "ground-state" baryons as 56 (i.e., symmetric) representation of 
SU(6)s. To comply with the Pauli exclusion principle, the color quantum 
number should be assigned to quarks as well. It is, however, not necessarily 
related to QCD color: in this paper gluons are considered nonexistent. The 
only role of color is to provide an explanation for why one should work 
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with the 56- (and not 20-) dimensional representation of SU(6)s. From 
now on we shall therefore ignore it. 

In earlier phenomenological studies (Zenczykowski, 1984, 1986; 
TSrnqvist, 1979, 1982a,b; TSrnqvist and Zenczykowski, 1984, 1986, 1987) 
the crucial ingredient was the consideration of the leading contribution to 
hadron self-energy coming from the symmetry-related set of two-hadron 
intermediate states. To estimate this contribution an assumption concerning 
the three-point hadron vertices was needed. This is the assumption of 
SU(6)w-symmetry (Lipkin and Meshkov, 1965; Barnes et al., 1965) 
(actually, the assumption is a little stronger, since the couplings 1-35-35, 
35-35-35 or 1-56-56, 35-56-56 are assumed to be related by the quark model). 
Since for the vertices involving excited hadrons the use of a phenomenologi- 
cal model is at present necessary, we restrict our attention to "ground-state" 
mesons and baryons only. 

The estimate of the self-energy contribution to the mass of hadron A 
due to its coupling to hadrons B and C (Fig. 1) involves the calculation 
of the square WBA c of the relevant S U ( 6 ) w  Clebsch-Gordan coefficient, 
called henceforth a weight. As shown in 7,enczykowski (1986) and T6rnqvist 
and Zenczykowski (1984, 1986), the leading contribution from the loop 
shown in Fig. 1 is 

mA = Co+ C, Y, wBAC(rn~+mc) (1) 
B,C 

where Co, C1 are unknown constants. Co may contain an additive depen- 
dence on flavor, but the spin dependence comes from the second term in 
equation (1) only. Formula (1) can be derived by expanding any specific 
expression for the loop of Fig. 1 to first order in the mass differences 
mB -(m~) and mc - ( m c )  (where (me) is some average mass of the multiplet 
to which B belongs) and neglecting all higher order terms. The only concepts 
used in (1) are discrete quantum-theoretic concepts (hadron masses, hadron 
and quark spins, as well as flavors). 

Fig. 1, 

B 

A A 

C 
The A ~ BC ~ A loop. The minus (plus) denotes the clockwise (anticlockwise) ordering 

of  particles in a vertex (CG coefficient ( A I B C )  or (BC IA)). 



Combinatorial Description of Space 15 

At this point it is conjectured that equation (1) is more fundamental 
than its derivation and that it actually constitutes a proper combinatorial 
expression for hadron mass. Any additional terms in (1) cannot be obtained 
in any reliable way from the considerations like those of Zenczykowski 
(1984, 1986) or TSrnqvist (1979, 1982a,b; TSrnqvist and Zenczykowski, 
1984, 1986, 1987). Rather, it is thought that such terms (if any) should be 
constructed within the combinatorial approach itself. Clearly, equation (1) 
defines the simplest class of such approaches. 

Let the mesons A, B, and C belong to the 1- or 35-dimensional 
representation of SU(6)s. The weight needed in equation (1) (we allow for 
the possibility of mixing among two states of I = 0, Y = 0; hence, in general, 
A1 # A2) is then 

1 
W B C  - -  ~ '  

A t A 2  - -  / "  9 e  0,- ( A a  I BC)(BCIA2) (2a) 
mAre  B z.L1A | 1 

m c  

with the SU(6)w Clebsch-Gordan coefficient given by 

(--1) WA -1 
(AIBC)- (2WA+I)I/2(WamA] WBmBWcmc)(A, B, C)k (2b) 

(k= wA+ WB+ we) 

The conventional S-spin values and their projections (SA, mA; SB, rn~; 
Se, mc) uniquely determine the corresponding values of W-spin 
(WA, WB, Wc) needed in equation (2b). The flavor coupling is 

(ft., B, C)o = -2-1/2F(A, B, C) 

(e{, B, C)2 = (3/2)'/2F(A, B, C) (2c) 

(fi~, B, C)3 = 3'/2D(A, B, C) 

where 

I~(A, B, C)~Tr(ABC- CBA), D(A, B, C)=-Tr(ABC+ CBA) 

(fi~)k = Ak," (AB)~=  A,Bkk m 

and A, B , . . .  are standard 3x3  meson matrices (:~enczykowski, 1986, 
Appendix C). The division into SU(2)w singlet and triplet depends of 
course on the choice of the auxiliary spin projection axis. Expression (2a) 
is, however, independent of this choice, as it should be if such an axis were 
to have no physical meaning at this stage. 

Assume for the moment that ms and me are all identical. The summa- 
tion over B and C in equation (2a) can then be performed and if A is not 
a flavor-singlet vector particle, the result is independent of A. Thus (up to 
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a possible additive flavor dependence of Co), all particles but the vector 
flavor-singlet are degenerate. For the latter case the sum over B and C of 
w~ c weights is smaller, since the couplings of the SU(6)w singlet vanish 
by equation (2c). Then, the constant Co takes on a different value in the 
original derivation of  Eq. (1) and, in general, the particle is not degenerate 
with other members of  1035 .  We discuss possible remedies for this vector 
flavor-singlet problem a little further. Below it is accepted that the I = 0, 
Y = 0 vector sector (in which mixing with the flavor singlet occurs) cannot 
be described through equations (1) and (2) without some modifications. 
Thus, no formulas resulting from the application of equations (1) and (2) 
to this sector shall be discussed. 

Let us now get rid of  the unknown constant Co in equation (1) (together 
with its possible additive flavor dependence). By forming appropriate combi- 
nations of meson mass differences, the following five equationsare obtained 
(two additional equations with parameters describing the sector mixed with 
the vector flavor singlet have been dropped): 

(378+ zr -4K)~xt = C, [ -2(3  n8 + 7r - 4 K )  

+2(3w8 + p - 4 K * ) -  (r  - w ) "  4~/2 sin 2~v] (3a) 

(p-7"r)ext=~C,[2p-(og+cp)+(~-w)cos23v 

~+ ~f - ] -t ~ -  7r + n'2 77 cos 2ae (3b) 

--r/' 
(K* -K)~xt = C ,~ f2 ( s in  28p) ~7 2 (3c) 

z / -  r/' . ) 
- - ~ - -  sm 26p = C , - 2 ~ / 2 ( K * -  K)  (3d) 

ext 

and 

( + ~';~cos28v) r/+ r/ '_ "rr = G ( - 4 r r  +4p)  (3e) 
2 ext 

In (3a)-(3e) the symbol of a particle stands for its mass, 78=-c~r l+s2B ' 
and ws=-C2v~O+ s2w, where cp (cv)=-cos Op (cos Ov) and sp(sv)~ 
sin Ov (sin Or) and the transformation of states from the SU(3)-symmetric 
to the physical basis is effected by 

'w) [Sv Cv ] r]to8) ] (4a) 
I~)J= cv - s v  LI~,)J 
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with IWs) = 6 - 1 / 2 ( u a  + d d  - 2s•) and ]to~) = 3-1/2(u-u + dd + sg) and similarly 
in the pseudoscalar sector with [to), I~)~ Ir/), Ir/); Iws), lto~) -~" It/s), Ir/l); Cv, 
Sv~Cv, sv. For ideal mixing COS(0ide~l)=x/-2-/3 and sin(0ide"~)=l/x/-3, 
[q~), In)--> -sg; [to), In') --> l/v~2( ufi +dd). 

In (3a)-(3e) the mixing is described by 6, the angle of deviation from 
ideal mixing: 

t l  i dea !  -I- (4b) Op(v) = u p ( v ) - -  6P(V) 

We assume in the vector sector for B and C mesons 

6v=0 (3to8 = 2~+w) (5a) 

0 = to ( S b )  

p + q ~ - 2 K * = 0  (5c) 

Then, one obtains from (3a) 

3ns+~r-4K =0 (if C1 # - 1 / 2 )  (6a) 

and after the diagonalization of the remaining equations (3b)-(3e) one gets 

1 n 
p-Tr+  2 2 cos26v ext 

4 [  1/_33 (n  + n_____' . + n ' -  n cos 26e) ] (6b) = ~ C 1  p - ~ ' +  2 2 

p - 7r - ~ 2 - -  ext 

4 C - ~  2 2 = - ~  I p - z r  -Tr+------ncos26v (6c) 

] 
-~ sin 2Bp.j ~,~t 

4 [K ,  [2\ l/2 n - n '  ] = ~ C 1  - K  + ~ )  -~ sin 26e (6d) 

4 - r/' sin 26p] ( 6 e )  

Since C~ should be positive [it corresponds (T6rnqvist and Zenczykowski, 
1984, 1986), e.g., to the first derivative of the negative and rising shift 
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function], it follows from (6a), (6c), and (6e) that 

7r + 3 7/8 - 4K = 0 (7a) 

p - ~r = - 1r + ~7 cos 28e (7b) 
2 2 

K* - K = sin 28p rl - rl (7c) 
2 

From (6b) and (6d) we have C1 = 31/2/4 (provided p - ~ "  or K * - K  ~ 0). 
I f  r / '>  7/ and K * >  K, it follows from (7c) that 8p <0 ,  in agreement with 
the experimental sign. For 8p = -45  ~ ("perfect"  mixing), we get for the left- 
and right-hand sides of  (7b) and (7c) the numbers gathered in Table I. The 
case with particle symbols standing for mass squares is given there as well. 
The mixing of  the light pseudoscalar  states (composed of  u, d, s quarks) 
with the heavy ones (made of  c , . . . )  is expected to increase the rhs in (7b) 
and (7c), thus improving the agreement with experiment. Conversely, if 8e 
is forced to be equal to zero, the particle of  hidden strangeness decouples 
from p and ~r, which should diminish the rhs of  (7b). It is interesting to 
look at a simplified situation in which internal pseudoscalar  mesons com- 
posed of  new quark types (q) are assumed to be unmixed with 7, 7'. The 
weights of  the contributions from mesons containing quark q to the light 
meson masses are given in Table II. 

From Table I I  it follows that heavy flavors do not contribute to the 
mass differences of  light mesons: the q-quark contributions to the left- and 
right-hand sides of (7a)-(7c) are identically zero. A detailed study of the 
mixing problem for N i >  3 is beyond the scope of  this paper,  due to the 
rapidly increasing (with NI) number  of  mixing angles and the unknown 
character of  flavor symmetry breaking in vertices. 

It should be noted that the vector flavor-singlet problem depends on 
the number  of  flavors NI: the S U ( N  s) singlet state contains smaller and 
smaller admixture of the SU(2) [SU(3)]  singlet when N / ~  oo. This suggests 
a possible way of dealing with the singlet problem for any finite number  
of  flavors. For the state (1/~/2)(u~+dd) to be an approximate eigenstate 
of  the infinite mass matrix, it is sufficient that the ratio of  sums over 

Table I. Comparison of Eqs. (7b) and (7c) with Experiment 

Mass Mass squared 

lhs rhs lhs rhs 

Eq. (7b) 0.627 0.355 0.566 0.341 
Eq. (7c) 0.396 0.167 0.550 0.252 
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Table II. Wei hts of Contributions from Internal Mesons Containing "Heavy" Quark q~ 

(uq)(~q)* (uq)*(aq)* Total 

2 2 4 

(uO)(Oq) (uO)(aq)* (uq)*(~q)* Total 

1/3 4/3 7/3 4 

(uq)(qg)* (uq)*(qg) (uq)*(qg)* Total 

K 1 1 2 4 

(uq)(qg) (uq)(qg)* (uq)*(qg) (uq)*(qg)* Total 

K* 1/3 2/3 2/3 7/3 4 

['q~. rt.s] 
rL, u rl ss .1 

(uCl)(ftq)* (sq)(gq)* (uCt)*(aq)* (sq)*(gq)* Total 

E 0:1 [: [: :1 [: 0] I: :] 
~ (vector) mesons are denoted by (uq) [(fiq)*] if the "light" quark is nonstrange 
and by (scj) [(gq)*] if it is strange; 

%. = ('0 + ~7')/2+cos 26p ( 'q'- 7/)/2, 

r/~u = %s = sin 26p ( '0'- "0)/2, and rtu ~ + ~/ss = ~ + ~'. 

k > 2(u, d)  o f  the off-diagonal and of  the diagonal  contr ibutions f rom the 
internal (Uglk)+ (uqk) pairs be close to zero. This can be achieved th rough  
an appropr ia te  breaking of  vertex symmetry.  Another  possibility of  dealing 
with the vector  flavor-singlet problem was ment ioned  in T6rnqvist  (1985): 
it requires the considerat ion o f  the "exci ted"  states (conjugated by C-pari ty  
to the " g r o u n d "  states), in addi t ion to the " g r o u n d "  states themselves. At 
present only a phenomenolog ica l  t reatment  o f  the involved vertices is 
possible, however.  

Since the vector flavor-singlet problem is absent f rom the ba ryon  sector, 
it is interesting to examine the "heavy"  quark  contr ibut ion in this sector. 
For  the " l ight"  quarks the SU(6)  w C l e b s c h - G o r d a n  coefficient for baryon  
B going into meson M and ba ryon  A (meson first convent ion)  is given by 

(-1) w.-3/2 

( B I MA)  - (2 WB + 1) 1/2( WBm~ I WMmM WAma)[ B, M, a ]k, 

(8a) 
( k  ~ - W B - ~  W A ,  l "~ W M )  
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with the flavor couplings: 

1 
[/~, M, A],, = ~ [ T r ( M )  Tr(/~A)- Tr( /~AM)-5  Tr(/~MA)] 

[/3, M, A],o = - T r ( M )  Tr(/~A) + Tr(/~AM) - Tr(/~MA) 

[/~8, M, A,o]2, 2 ~  -j b = - -  ( S b q ) ~ / 2 A b o - B t M ~ e i l ~  

[/~1o, M, As]2, 2v~ ffb/Ja,roAt - -  ( S b i j ) l / 2  . . . .  b.'ntjEial 

where 

[/~, M, A]3 ' --- (30)'/2 a a q .  - b 
( SaijSbij ) l /  2 B A b i j M  a 

34~ 
[/~, M, A]3o = (soijsbij),/2B~ b 

(8b) 

f i  for i = j =  k sij k = for i C j  r k r i 

in remaining cases 

with the standard assignment for meson (M) and baryon (B, A) matrices 
(Zenczykowski, 1986, Appendix C). The weights needed in equation (1) are 

1 
MA ~ - - ( B I M A ) ( M A I B )  (8c) 

wB =mA...B2S.~ +1 
r n  M 

In 2;enczykowski (1986) it is shown that the contribution from the "ground"- 
state intermediate hadrons composed of u, d, s quarks preserves the 
Gell-Mann-Okubo formula for octet and the equal spacing rule for the 
decouplet. The signs of A - N and p - ~- splittings were shown to be related 
and identical. Equations (1) and (8c) in addition to SU(3) mass formulas 
lead to 

Y.* -Y~ - (~* - E) = 0 (ga) 

- 3A - 2A + 2N + 2"~* = 0 (gb) 

with (9a) being the SU(6) relation of Gfirsey and Radicati (1964) and Pais 
(1964) and (9b) the formula of de R6jula et al. (1975) for the (Z - A) / ( A  - N) 
ratio of mass differences. 

It may be checked after lengthy but straightforward calculations [using 
a suitably modified equation (8b) or Table 1 of 7enczykowski (1986)] that 
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a complete set of ground-state intermediate hadrons containing an addi- 
tional quark q does not contribute to the mass combinations (9a), (9b) of 
external baryons. This cancellation occurs independently of the nature of 
the mass relations between the q-containing hadrons themselves. On the 
other hand, the Gell-Mann-Okubo and the equal spacing SU(3) formulas 
are fulfilled for external lines provided the following equalities hold for the 
internal lines as well: 

{uu}q + {ss}q - 2{us}q = 0 
(9c) 

{uuq}* + {ssq}* - 2{usq}* = 0 

where {uu}q({uuq}*)  denotes the mass of the spin-l/2 state with up and/or 
down quarks symmetrized (the mass of the fully symmetric in flavor spin-3/2 
state). If (9a)-(9c) and the SU(3) mass formulas are fulfilled for the internal 
lines, then (9c) for the external baryons is also fulfilled. Apart from a 
degenerate case [a specific single value of C1 (baryon sector)] (9c) results 
also by solving (1) for Ns= 4 [and the S U ( 8 ) w  vertex symmetry]. 

Equation (1) can also be applied to the question of isospin-violating 
mass differences of hadrons. Such calculations have recently been done for 
the ground-state baryons (T6rnqvist and Zenczykowski, 1987), where there 
are ten linearly independent mass differences. It has been shown that 
equation (1) leads to: (1) six sum rules for baryon masses, which follow 
from the assumed SU(6) symmetry and are satisfied by other models as 
well; (2) additional prescriptions for four combinations of baryon masses, 
which, together with a phenomenological estimate of contributions from 
other possible sources, describe the observed pattern of isospin-violating 
mass differences very well. 

A shortened version of Table 1 of T6rnqvist and Zenczykowski (1987) 
obtained after neglecting possible dependence of Co in (1) on the third 
component of isospin is given here as Table III. Table III reveals that the 
contributions of equation (1) alone suffice to predict, in agreement with 

T a b l e  l II .  C o m p a r i s o n  o f  E x p e r i m e n t  wi th  P red i c t ed  Ra t ios  o f  the  C o m b i n a t i o n s  o f  I sosp in -  

V io la t ing  Mass  Di f fe rences  T h a t  Are  Sensi t ive  to the  D y n a m i c a l  I n p u t  

Ra t io  o f  mass  c o m b i n a t i o n s  P red i c t i on  a E x p e r i m e n t  b 

p - n -  1 / 6 [ s  + - s  * + - s  
- 0 . 2 5 + 0 . 0 4  - 0 . 1 9 + 0 . 0 6  

+0 .23  + 0.09 + 0 . 5 4 +  0.18 

p - n + 1 / 6 [ E  + - ~,- + 2(Y~ *+ - s  
E + -  s  ( s  E*-) 

p - n + 1/613: + - s  + 2 ( s  *+ - s  

~ E q u a t i o n  (1). 

h E l e c t r o m a g n e t i c  c o n t r i b u t i o n  s u b t r a c t e d .  
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experiment (after subtracting the electromagnetic contribution), two out of 
three ratios of mass combinations of point 2 above. One still lacks part of 
the necessary experimental input required by equation (1) to compute the 
numerator of  the third ratio. The agreement seen in Table III is very 
interesting: three mass differences that customarily are thought to be of 
different dynamical origins are apparently correctly related by a single 
group-theoretic prescription. [One of the mass combinations considered, 
namely p-n+I/6[E+-E-+2(E*+-E*-)]  measures what is usually 
thought to arise from the quark mass difference mu-ma.] It should be 
recalled that in the phenomenological study of  T6rnqvist and Zenczykowski 
(1987) leading to Table III all the dependence on the momentum variable 
has been totally ignored. Yet the resulting numbers are in surprisingly good 
agreement with experiment. 3 The success achieved under the assumption 
of neglecting the momentum altogether may be interpreted as corroborating 
the "discrete" spirit of  the combinatorial approach, and the need to intro- 
duce a discrete "predecessor" of momentum in such a way that would not 
violate the successful mass predictions of this section. 

4. VERTICES 

Data on baryon magnetic moments [supplemented with the assumption 
of vector meson dominance (Schwinger, 1967; Zenczykowski, 1985)] and 
other data on hadronic couplings (Arndt et al., 1979) indicate that SU(6)w 
and flavor SU(3) symmetries are broken in a peculiar nonadditive way 
(Lipkin, 1983; Dicus and Teplitz, 1985). This experimentally observed 
pattern of vertex symmetry breaking has not yet been explained in any 
scheme. Thus it is of interest to examine the predictions of the group- 
theoretic approach modeled upon the treatment of masses of the previous 
section. Below the results of such a calculation are briefly sketched. 

Consider the diagrams of Fig. 2, which directly describe the group- 
theoretic structure of the baryon-meson-baryon (BMA) vertex and are 
analogous to equation (2a) or (8c). Each vertex component in Fig. 2a 
corresponds to an SU(6)w Clebsch-Gordan coefficient of (2b) or (8a). The 
direction of the arrows (incident ~ outgoing) and vertex orientation corre- 
spond to the bra-ket description and meson first convention of the SU(6)w 
Clebsch-Gordan coefficients, respectively. Relative normalization and 
phases in (2b) and (8) have been chosen consistently so that a simple 
product of CG coefficients possesses the required SU(6) w symmetry proper- 
ties after the summation over internal states is carried out. The contributions 

3The predicted ratio of  {p - n + 1/6[E + - ~ - + 2 ( ~ ,  *+ - Y * - ) ] } / ( A -  N)  is 30% larger than the 
experimental result. This might indicate the necessity of  considering flavor symmetry breaking 
in the vertices. 
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B 

M / 

o) b) 

Fig. 2. The group-theoretic structure of the B~ MA vertex: (a) meson M emitted from 
internal meson line, (b) meson M emitted from internal baryon line. The minus (plus) near 
vertices denotes the clockwise (anticlockwise) ordering of particles in a vertex. 

from Fig. 2a and 2b are therefore, respectively, 

L(~) l~,~ Mz, C)=(B]MIC)(MI[MM2)(M2CtA) (lOa) B ~ M A k l V ~ I  

L(b) ll,~' C~, C2)=(B[M'CI) (C~]MC2)(M'C2]A)  (lOb) B ~  MA',, ;~vl 

To calculate (10a) and (10b), one needs, besides equations (2b) and (Sa), 

(-1) ws-;:)2 ( WMmM WAmA I W~m~) [ A, M, B ]k: (MAIB)=(2  Wa + I 

(k=-- WB+ Wa, I--=-- WM) (11) 

For any M ~ 3 5  of SU(6)w (but not for the singlet) one has 

E L (~) = 6(BIMA), E L(b) = 18(BIMA) 
MI,2~ 1~35 M ' E  lG35 

C e 5 6  Ci,2e56 

Thus, if the masses corresponding to internal lines are degenerate, so that 
such summations can actually be performed, the resulting BMA vertex is 
SU(6) w-symmetric. 

Introducing the breaking of the SU(6) w-vertex symmetry through mass 
differences of  internal lines only and estimating it (as before in the mass 
sector itself) to first order in mass differences, one gets expressions of  the 
following structure [ M  e 35 of SU(6)w]: 

loop contribution 

= Lo(BIMA) 
M~ M 2 + LI(BJMA)(W~MAmM, + WBMArnM ~ + WCMAmC 

+ M '  C~ C 2 WBMAmM'+ WBMArnc~ + WnMamc2) (12) 

+ possible Zweig-rule-violating term 
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where Lo and L 1 a r e  constants and WI~I~IA, etc., are weights calculated on 
a computer. It turns out that Zweig-rule-violating terms vanish if K* - K = 
4 / 3 ( E * - E ) ,  what is not far from experiment. Such terms were therefore 
neglected. From equation (12), upon assuming the dominance of vector 
mesons (Schwinger, 1967; Zenczykowski, 1985), one can derive a set of 
formulas for baryon magnetic moments and magnetic transitions. There are 
two free parameters in these formulas: the size tz (adjusted to fit IZe) of 
the SU(6)w-symmetric term (from freedom in L0), which may be argued 
to be approximately determined by 2mN/rnp (Schwinger, 1967; 
7,enczykowski, 1985) and the size C of the correction (from L1). Using for 
simplicity perfect mixing for pseudoscalar and ideal mixing for vector 
mesons and inserting physical hadron masses into equation (12), one gets 
finally (the following equations with all the weights and thus with all the 
mass dependences shown explicitly are complicated and their full presenta- 
tion here is redundant) 

tZp = tz, /xn = -2/3/~ 

/ ~ §  = 8/9(1 + 8C) + 1/9e(1 + 9.3 C) 

/ x ~ / t  z = -4 /9 (1  + 8.2C) + 1/9e(1 +9 .3C)  

~A/~  = - 1 / 3 e ( 1 + 9 . 4 C ) + 0 . 1 C  (13) 

Izz0//~ = -2 /9 (1  + 12.1 C) - 4 / 9 e ( 1  + 16.5 C) 

txz-//x = 1/9(1 + 11.8C) - 4 / 9 e ( 1  + 16.5 C) 

tZa~p~,/tz = 2/3x/2(l + l .38C),  e=- mp/m~ 

It turns out that no choice of  parameter C in equations (13) can explain 
the observed pattern of nonadditivities in baryon magnetic moments and 
magnetic transitions (Lipkin, 1983; Schwinger, 1967; Zenczykowski, 1985). 
Thus, the combinatorial scheme as considered so far is able to describe 
properly the pattern of  hadron masses, but fails when one attempts to apply 
it in the most naive way to the description of vertex symmetry breaking. 
Success in the description of  masses and failure in the description of vertices 
is a feature of all other "successful" contemporary schemes as well. 

It should be noted that the attempt of this section is based on the 
simplest possible guess concerning the algebraic structure of vertices, jus- 
tified by the success of equation (1) only. Within the S-matrix approach 
the W-spin projection axis cannot be identical for all three subvertices of 
the diagrams corresponding to Fig. 2, as opposed to the situation encoun- 
tered in Fig. 1. Thus, the introduction of momentum of intermediate particles 
into the description of  vertex symmetry breaking may seem necessary. 
Clearly, if the general idea of this paper is a sound one, momentum should 
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be introduced in a way compatible with the discrete spirit of the approach. 
The twistor approach does not lead, however, to the conventional 
classification of leptons and quarks (Penrose, 1977; Perj~s, 1977). Thus, the 
question of how momentum should be introduced is still an open problem. 

5. CONCLUDING REMARKS 

In standard approaches quarks are thought of as pointlike particles 
confined into extended hadrons. Apart from the interaction of quarks within 
hadrons (which, among other effects, leads to quark confinement), there 
are also interactions of hadrons themselves, leading to hadronic self-energy 
shifts and other hadron-level effects. All this physics takes place in ordinary 
space and equation (1) constitutes the leading term of the extremely compli- 
cated contribution from the "hadronic cloud." This was the point of view 
adopted in Zenczykowski (1986). 

In this paper group-theoretic discrete concepts are considered funda- 
mental and it is thought that concepts such as continuous space and 
momentum and, consequently, the field-theoretic description of quark 
degrees of freedom in hadrons should emerge in an appropriate large- 
structure limit only. Equation (I) is then thought to provide a connection 
between the S-matrix approach to hadron masses through self-energies 
(with classical momentum constituting one of the primary concepts of the 
approach) and the purely algebraic approach to hadron masses from which 
the naive quark model has originated. The question of a possible correspon- 
dence between other contributions of the S-matrix approach and the alge- 
braic approach remains of course open. 

Whether the interpretation advocated in this paper should be con- 
sidered as more acceptable than the orthodox point of view adopted in 
7,enczykowski (1986) can be decided only by further attempts to develop 
algorithms based solely on discrete concepts and capable of linking together 
various experimental facts. 
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